Study the structure stability of NiFe_{2–x}Cr_xO₄ (x = 0, 0.08) during H_2/CO_2 cycle reaction

Chen Linshen \cdot Chen Songying \cdot Lu Guanglie

Received: 1 May 2003 / Accepted: 25 May 2005 / Published online: 20 September 2006 - Springer Science+Business Media, LLC 2006

Abstract H_2/CO_2 cycle reaction activities of spinel structure NiFe_{2–x}Cr_xO₄ (x = 0, 0.08) prepared by co-precipitation were determined. The results showed that pure NiFe₂O₄ had almost lost its $CO₂$ decomposition activities after 15 cycles, while Cr^{3+} doped $NiFe₂O₄$ still had about 40% of the initial reaction activity value after 50 reaction cycles. The magnetic properties of samples annealed at 350° C indicated that M_s and M_r decreased from 32.49 to 26.04 emu/g and 9.39 to 7.31 emu/g, respectively, but H_c increased from 230 to 1800 Oe with the increasing of Cr^{3+} content. XRD Rietveld analysis showed that there appeared 23.15% Fe_yNi_{1-y} $(0 < y < 1)$ and no Fe₃C in pure $NiFe₂O₄$ system after the first $H₂/CO₂$ cycle reaction. With the increasing of cycle times, the phase abundance of $NiFe₂O₄$ decreased rapidly. At the same time, Fe3C appeared and its content increased fast. After 15 cycles, the phase abundance of $NiFe₂O₄$ is less than 5%wt, but those of Fe_yNi_{1-y} (0 < y < 1) and Fe_3C enhanced to 48.15 %wt and 46.92 %wt, respectively. However, the cycle reaction life of $NiFe_{2-x}Cr_{x}O_{4}$ $(x = 0.08)$ was much longer than NiFe₂O₄. The spinel structure stability was improved dramatically because of the existing of Cr^{3+} in the cell of NiFe₂O₄. After 50 cycles, the phase abundance of $NiFe₂O₄$ still had 20 %wt.

Measurement and Analysis Center, Zhejiang University, Xixi Campus, Tianmushan Road 148, Hangzhou 310028, P.R. China

e-mail: chenls@zjuem.zju.edu.cn

C. Songying

Institute for Catalysis, Zhejiang University, Xixi Campus, Hangzhou 310028, P.R. China

Introduction

In the early of 1990, Tamaura $[1]$ $[1]$ reported that $CO₂$ could reduce to C with an efficiency of nearly 100% at $290 °C$ on the oxygen-deficient magnetite. Subsequently, some researchers [[2–6\]](#page-4-0) found that the oxygendeficient spinel structure $MFe₂O_{4-\delta}(M = transition$ metals, $\delta > 0$) could also decompose CO₂ to C about $300 \degree C$ in 100%. No matter what magnetite or other spinel ferrite would form oxygen-deficient structures when they were reduced by H_2 at about 300 °C. Such oxygen-deficient compounds had strong reducing ability. They could capture oxygen not only from $CO₂$ but also from H_2O or other oxides. Being strong reducing agent, the oxygen-deficient compounds are very difficult to exist under normal conditions, so there are little studies on such compounds. Though there were some reports of oxygen-deficient compounds such as $Fe₃O_{4-\delta}$ and MFe₂O_{4– δ}(M = Fe, Ni, Co, Mn, etc.) about their reaction activities of decomposing $CO₂$ to C, the structure change of these spinels in H_2/CO_2 cycle reaction is not clear yet. For H_2/CO_2 cycle reaction, the activity life, in the fact the structure stability of the spinel, is very important. But till today we have not found how to improve the structure stability of spinel in cycle reaction.

 $NiFe₂O₄$ is a typical $AB₂O₄$ spinel compound. Its oxygen-deficient structure has good ability to decompose $CO₂$ to C. In this paper, we studied the activity and structure change of NiFe_{2–x}Cr_xO₄ ($x = 0, 0.08$) in H_2/CO_2 cycle reaction. In order to elucidate Cr^{3+} doping effect and the structure stability of $NiFe₂₋$ $_{x}Cr_{x}O_{4}$ during cycle reaction process, we adopted physical property measurement system to determine

C. Linshen (\boxtimes) · L. Guanglie

the magnetite properties of $350 \degree C$ annealed samples, and XRD Rietveld analysis method to obtain the phase combination and phase abundance of samples after 15 and 50 times H_2/CO_2 cycle reaction respectively.

Experimental

 $Ni(NO₃)₂$, Fe(NO₃)₃ and NaOH (A.R.) were used as starting materials. NiFe₂O₄ was prepared by mixed ions coprecipitation from $[Ni^{2+}] = 1.0 M$, $[Fe^{3+}] =$ 1.2 M, $[NaOH] = 3.0$ M with the molar ratio of Ni^{2+} and $Fe³⁺$ were 1:2. Before precipitating, two metal ions were mixed sufficiently. Then the mixed metal ions and NaOH precipitated in parallel-current way under 50–70 °C and $pH = 11-14$ conditions. The suspension was filtered and washed carefully until all $NO₃$ was removed. The precipitated was dried at 120–150 °C and calcined at 350 °C for 3 h in air atmosphere. Cr^{3+} doped NiFe₂O₄ was prepared using the same method.

The equipment used for H_2/CO_2 cycle reaction was built according to the literature [[2\]](#page-4-0). Sample was heattreated at 310 °C and 40 mL/min hydrogen follow through a quartz tube treatment. H_2 reduction time was kept 2 h for each reaction. After finishing reduction, the reaction system was pumped to vacuum for 10 min. Then using pure Ar blew 10 min to remove the absorbed H_2 . Conducted CO_2 into the reaction system to 0.1 MPa and counted the reaction time immediately. The total decomposition time was 4 h in each cycle reaction. With the increasing of cycle reaction, $CO₂$ in the system could not decompose completely. Before the next cycle reaction, the remaining gas must be removed. When the cycle reaction finished, the system was cooled down to the room temperature and the sample was taken out for XRD analysis. We chose 1 and $15 H₂/CO₂$ cycle reaction times for pure $NiFe₂O₄$ and 1, 15, 35, 50 times for Cr^{3+} doping samples, respectively.

The magnetic properties were investigated by physical property measurement system (USA Quantum Design Corp. PPMS-9T). XRD data for Rietveld analysis were obtained with a Rigaku D/max-3B X-ray powder diffractometer, using CuK_α radiation and a power of $40 \text{ kV} \times 40 \text{ mA}$, a diffracting beam graphic monochrometer over the range $2\theta = 15{\text -}100^{\circ}$ with a step interval of $2\theta = 0.02^{\circ}$ and a count time of 6 s per step. Rietveld refinements were performed on a personal computer using Rietica software [[7\]](#page-4-0). The crystallite size of Fe_yNi_{1-y} (0 < y < 1) was obtained using Scherrer method.

Results and discussion

$CO₂$ decomposition activity

Figure 1 shows $CO₂$ decomposition activity curves of $NiFe_{2-x}Cr_xO_4$ ($x = 0, 0.08$) at the 15th and 50th cycle. From Fig. 1 we can find that pure $NiFe₂O₄$ had almost lost $CO₂$ decomposition activity at the 15th cycle. When doped with Cr^{3+} , NiFe₂O₄ still had about 40% of the initial activity value at the 50th cycle.

Magnetite properties

0.9

1.0

Figure [2](#page-2-0) shows 5K hysteresis loops of NiFe_{2–x}Cr_xO₄ $(x = 0, 0.08)$ after annealing at 350 °C. Table 1 gives the saturation magnetization M_s , remanent magnetization M_r and coercivity H_c calculated from Fig. [2](#page-2-0). According to Table 1, it obviously shows that the magnetic properties of samples changed corresponding to the doping content of Cr^{3+} . M_s and M_r decrease as the content of doping Cr^{3+} increases while H_c increases. For nickel ferrite material, the saturation magnetization M_s and remanent magnetization M_r are defined by the molecular magnetic moment. In the spinel structure of NiFe₂O₄, Ni²⁺ ions and a half of $Fe³⁺$ ions located in octahedral A site, another half of $Fe³⁺$ ions located in tetrahedral B site. It is known that Cr^{3+} ions have strong B-site preference. When Cr^{3+} ions were introduced into the inverse spinel NiFe₂O₄, Cr^{3+} ions substituted for some of Fe³⁺ in B-site. Cr^{3+} ions have 3 μ_B , less than 5 μ_B of Fe³⁺ ions. So the introduction of Cr^{3+} ions on octahedral B sites in the inverse spinel nickel ferrite will reduce the saturation magnetization. On the other way, the doping sample has smaller crystallite size than the pure one, the

Fig. 1 CO₂ decomposition activity curves of NiFe_{2–x}Cr_xO₄ $(x = 0, 0.08)$ A: 15th cycle, B: 50th cycle

Fig. 2 5K hysteresis loops of NiFe_{2–x}Cr_xO₄ after annealing at 350 °C, curves a, b stand for $x = 0$, 0.08

Table 1 Magnetic properties of NiFe_{2–x}Cr_xO₄ ($x = 0$, 0.08) annealed at 350 °C

Annealed temperature	$NiFe2-rCrrO4$			
	Magnetic parameters	$x=0$	$x = 0.08$	
350 $\mathrm{^{\circ}C}$	M_s (emu/g) M_r (emu/g) H_c (Oe)	32.49 9.39 230	26.04 7.31 1800	

atomic distance of the surface get longer, as a result, the saturation magnetization also will reduce while the coercivity H_c increases [[8\]](#page-4-0). This is consistent with the magnetic properties of NiFe_{2–x}Cr_xO₄ ($x = 0, 0.08$) on Table 1.

XRD results

Figures 3 and 4 show XRD patterns of NiFe_{2–x}Cr_xO₄ $(x = 0, 0.08)$ after different times of H₂/CO₂ cycle reaction, respectively. Figure [5](#page-3-0) shows XRD Rietveld analysis patterns of NiFe_{2–x}Cr_xO₄ ($x = 0$, 0.08) and Table 2 gives the results of XRD Rietveld analysis. According to Figs. 3 and 4 and Table 2, it was obviously found that a new phase Fe_vNi_{1-v} (0 < y < 1) appeared after the first cycle reaction in spite of Cr^{3+} doped or not, but the phase abundance of Fe_vNi_{1-v} $(0 < y < 1)$ in Cr^{3+} doped NiFe₂O₄ system was less than that in pure $NiFe₂O₄$ system. With the increasing of reaction cycles, the phase abundance of $NiFe₂O₄$ decreased, while $Fe₃C$ appeared and its abundance increased quickly. After 15 cycles, the abundance of $NiFe₂O₄$ in pure $NiFe₂O₄$ system just left 5 %wt and the sample had almost lost $CO₂$ decomposition activity,

Fig. 3 XRD pattern of NiFe₂O₄ after 1, 15 cycles 1#: 1 cycle, 2#: 15 cycles *: NiFe₂O₄, a: Fe_yNi_{1-y} (0 < y < 1), t: Fe₃C

Fig. 4 XRD pattern of NiFe_{2-x}Cr_xO₄ ($x = 0.08$) after 1, 15, 35 and 50 cycles 1–4 are 1, 15, 35, and 50 cycles, respectively, *: NiFe_{2–x}Cr_xO₄, a: Fe_yNi_{1–y} (0 < y < 1), t: Fe₃C

while the crystallite size of Fe_yNi_{1-y} (0 < y < 1) increased from 9.8 to 73.5 nm. However, the abundance of NiFe₂O₄ in Cr³⁺ doped NiFe₂O₄ system still had about 20 % wt and its $CO₂$ decomposition activity also had 40 %wt of the initial activity value at the 50th cycle. At the same time, the phase abundance of Fe_vNi_{1-v} and Fe3C attained 41.23 %wt and 39.02 %wt, respectively. The crystallite size of Fe_vNi_{1-v} (0 < y < 1) increased from 9.6 to 85.0 nm gradually. According to the above results, we can find that the existing of Cr^{3+} in the cell of $NiFe₂O₄$ not only delayed the collapsing the spinel structure, but also inhibited the increasing of Fe_vNi_{1-v} $(0 < y < 1)$ crystallite size.

Discussion

Being as AB_2O_4 type of spinel structure, the oxygen closed-packing of NiFe₂O₄ is fcc, Ni²⁺ and a half of $Fe³⁺$ ions located in octahedral sites, other half of $Fe³⁺$ ions located in tetrahedral sites. During H_2/CO_2 cycle

Table 2 Rietveld analysis results of $NiFe_{2-x}Cr_xO_4$ $(x = 0, 0.08)$ Note: R_{wp} = weighted pattern factor, R_p = pattern factor, $S =$ Goodness of fit [[9\]](#page-4-0)

	Cycle time				
	$x=0$		$x = 0.08$		
		15		50	
$R_{\rm wp}$	8.955	9.78	9.32	11.25	
$R_{\rm p}$	6.78	7.25	6.85	9.24	
$\overline{\mathbf{S}}$	1.71	1.79	1.75	1.91	
$NiFe2O4$ (%wt)	76.85(1.23)	4.93(0.54)	85.26(1.74)	19.75(0.67)	
$\text{Fe}_y \text{Ni}_{1-y}$ (%wt) (0 < y < 1)	23.15(0.56)	48.15(1.33)	14.74(0.61)	41.23(1.12)	
$Fe3C$ (%wt)	0	46.72(1.09)	θ	39.02(1.30)	
The crystallite size of Fe_vNi_{1-v}/nm	9.8(3)	73.5(5)	9.6(4)	85.0(7)	

reaction, NiFe₂O₄ was reduced by H_2 to form oxygendeficient structure at first. In the reducing process, O^{2-} migrated from the bulk structure of $NiFe₂O₄$ to the surface and reacted with the absorbed H_2 to form H_2O , the electron remained on the solid surface. Fe^{3+} accepted these electrons reduced to $Fe²⁺$ in order to

preserve the electrical neutrality of compound, as a result, $NiFe₂O₄$ transformed to oxygen-deficient structure. When the oxygen-deficient compound reacted with CO_2 , Fe²⁺ oxidized to Fe³⁺, O²⁻ migrated into the bulk of NiFe₂O_{4– δ} and the oxygen-deficient structure return to the normal structure too. Because $Ni²⁺$ is easier to be reduced than $Fe³⁺$, Ni appeared at the first step. The reduced product Ni had the behavior of H_2 spill. So the appearance of Ni in the system would enhance the reducing ability of $H₂$. Under the processing of cycle reaction, some amount of Fe appeared, and such Fe would alloy with Ni to form Fe_vNi_{1-v} (0 < y < 1). Small crystallite Fe_vNi_{1-v} $(0 < y < 1)$ could react with CO₂ to form Fe₃C. When the crystallite size of Fe_yNi_{1-y} (0 < y < 1) grew up, its $CO₂$ decomposition activity declined. But Fe₃C had no $CO₂$ decomposition activity. Finally, the spinel structure of NiFe₂O₄ collapsed and sample lost its $CO₂$ decomposition activity.

When NiFe₂O₄ was doped with Cr^{3+} , the spinel structure stability raised dramatically. Though the cycle reaction times up to 50, the phase abundance of spinel still had 20 % wt and $CO₂$ decomposition activity still had 40% the initial reaction activity value for Cr^{3+} doping sample. According to samples' magnetic properties discussed above, we can conclude that Cr^{3+} entered the bulk structure of $NiFe₂O₄$. Based on the ligand field theory, we known that Cr^{3+} located in octahedral site (B site). Cr^{3+} was a stronger acid than $Fe³⁺$ by virtue of its ability to attract electron pair as the radii of Cr^{3+} and Fe^{3+} were 0.064 and 0.067 nm respectively, thought they all had a valence of three. Furthermore, the strength and stability of Cr–O covalent bond are stronger and better than Fe–O. When doped Cr^{3+} entered the bulk structure of NiFe₂O₄ and replaced the same amount of $Fe³⁺$, Cr–O bond would distribute equally in B sites of the spinel. Such Cr–O bonds could raise the stability of $NiFe₂O₄$ structure. During the formation process of oxygen-deficient structure under H_2 atmosphere, the collapsing rate of $NiFe₂O₄$ decreased and the cycle reaction life was lasted effectively.

Conclusions

 $NiFe₂O₄$ have good $H₂/CO₂$ reaction activities. But the pure NiFe₂O₄ lost its decomposition CO_2 activity just after 15 times H_2/CO_2 cycle reaction. The structure of NiFe₂O₄ gradually collapsed to Fe_yNi_{1–y} (0 < y < 1) and Fe₃C during cycle reaction process. When $NiFe₂O₄$ was doped with some amount of Cr^{3+} , the stability of NiFe₂O₄ spinel structure was dramatically raised. Though the cycle reaction times up to 50, the phase abundance of spinel still had 20 %wt and $CO₂$ decomposition activity still had 40% the initial reaction activity value.

Acknowledgment The research was supported by National Natural Science Foundation of China (No. 20277033) and measurement & Analysis Foundation of Zhejiang Province (No. 03110).

References

- 1. Tamaura Y, Tabata M (1990) Nature 346:255
- 2. Kodama T, Tominaga K, Tabata M et al (1992) J Am Ceram Soc 75:1287
- 3. Tabata M, Nishida Y, Kodama T et al (1993) J Mater Sci 28:971
- 4. Akanuma K, Nishizawa K, Kodama T et al (1993) J Mater Sci 28:860
- 5. Zhang CL, Li S, Wang LJ et al (2000) Mater Chem Phys 62:44
- 6. Zhang CL, Li S, Wang LJ et al (2000) ibid. 62:52
- 7. Howard CJ, Hunter BA (1997) A computer program for Rietveld analysis of X-ray and neutron powder diffraction patterns. Lucas Heights Research Laboratories, Australia, p 2
- 8. Lide Z, Jimei M (2002) Nanomaterials and nanostructure. Science Press, p 315
- 9. Young RA (1993) The Rietveld method. Oxford Science Publication, p 22